Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 322: 138212, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36822517

RESUMO

Conventional wastewater treatment systems are not designed to remove pharmaceutical compounds from wastewater. These compounds can be degraded into many other transformation products which are hardly, if at all, studied. In this context, we studied the occurrence and degradation of furosemide, a very frequently detected diuretic, along with its known degradation products in several types of wastewater. Influent and effluent from the Seine-Centre Wastewater Treatment Plant (WWTP) (Paris, France) as well as outlet of residential care homes (Dordogne, France) were analyzed by Ultra-Performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) to quantify furosemide and its known degradation products, saluamine and pyridinium of furosemide. Oxidation experiments (chlorination, ozonation and UV photolysis with hydrogen peroxide) were then performed on furosemide solutions and on water from residential care facilities to study the degradation of furosemide by potential advanced processes, and also to identify unknown oxidation products by high-resolution mass spectrometry. Furosemide was well degraded in Seine-Centre WWTP (>75%) but did not increase the concentrations of its main degradation products. Saluamine and pyridinium of furosemide were already present at similar concentrations to furosemide in the raw wastewater (∼2.5-3.5 µg.L-1), and their removal in the WWTPs were very high (>80%). Despite their removal, the three compounds remained present in treated wastewater effluents at concentrations of hundreds of nanograms per liter. Chlorination degraded furosemide without pyridinium production unlike the other two processes. Chlorination and ozonation were also effective for the removal of furosemide and pyridinium in residential care home water, but they resulted in the production of saluamine. To our knowledge this is the first evidence of saluamine and pyridinium of furosemide in real water samples in either the particulate or dissolved phase.


Assuntos
Ozônio , Poluentes Químicos da Água , Águas Residuárias , Furosemida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Ozônio/análise , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...